Long
Division to Decimal Places
http://www.mathsisfun.com/long_division3.html
8.17.2011
When we are given a long division to do it will
not always work out to a whole number. Sometimes there will be numbers left
over. We can use the long division process to work out the answer to a
number of decimal places.
The secret to working out a
long division to decimal places is the ability to add zeros after the decimal
point.
Example: 150 is the
same as 150.00
We can add as many zeros as
we wish after the decimal point without altering the numbers value.
We will use the example
below. It works out neatly to one decimal place
435 ÷ 25
|
4 ÷ 25
= 0 remainder 4 |
The first number of the dividend
is divided by the divisor. |
|
|
The whole number result is placed
at the top. Any remainders are ignored at this point. |
|
25 × 0
= 0 |
The answer from the first
operation is multiplied by the divisor. The result is placed under the number
divided into. |
|
4 – 0
= 4 |
Now we take away the
bottom number from the top number. |
|
|
Bring down the next number of the
dividend. |
|
43 ÷ 25
= 1 remainder 18 |
Divide this number by the divisor. |
|
|
The whole number result is placed
at the top. Any remainders are ignored at this point. |
|
25 × 1
= 25 |
The answer from the above
operation is multiplied by the divisor. The result is placed under the last
number divided into. |
|
43 – 25
= 18 |
Now we take away the
bottom number from the top number. |
|
|
Bring down the next number of the
dividend. |
|
185 ÷ 25
= 7 remainder 10 |
Divide this number by the divisor. |
|
|
The whole number result is placed
at the top. Any remainders are ignored at this point. |
|
25 × 7
= 175 |
The answer from the above
operation is multiplied by the divisor. The result is placed under the number
divided into. |
|
Now we take away the
bottom number from the top number. |
|
|
|
Now we have reached the end of the
whole numbers we add a decimal place and the first zero. Notice the decimal
point which has appeared on the answer line and by the dividend. It does not
appear anywhere else. |
|
|
Bring down the next number of the
dividend. |
|
100 ÷ 25
= 4 remainder 0 |
Divide this number by the divisor. |
|
|
The whole number result is placed
at the top. Any remainders are ignored at this point. |
|
25 × 4
= 100 |
The answer from the above
operation is multiplied by the divisor. The result is placed under the number
divided into. |
|
100 – 100
= 0 |
Now we take away the
bottom number from the top number. |
|
|
The
subtraction has given zero. We stop when this happens. The answer will be 17.4
As long as the subtraction gives a number above zero the long division can
carry on to as many decimal places as we wish. Answer:
435 ÷ 25 = 17.4 |